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Metabolic rift theory has been applied to
understanding various instances of our
society’s disruption of ecological
processes. Capitalism, with its ever-
expanding production to realize profits on
an ever-growing market has created
innumerable rifts between natural and
social “metabolic” processes. Both as an
analytical approach and a metaphor,
metabolic rift theory also sheds light on
the forms of disruption of human
microbial ecosystems, with consequences
for human health. Human microbiota, comprised of the microorganisms living on and in
humans, has been shown to be essential for a growing list of physiological, metabolic,
and developmental processes, as well as to mediate between environmental and
physiological processes. Alterations of microbial biodiversity that result in disruption of
microbial ecosystem functions (collectively referred to as dysbioses), have been
associated with many noncommunicable and autoimmune conditions that are
increasingly prevalent in industrialized and developing nations. Major factors favoring
these dysbioses include diets high in processed foods and extensive antibiotic
exposures.

These factors cannot be divorced from the practices of respective industries that see
profits and capital accumulation as their primary goals. These goals favor production
that is divorced from ecological networks and respond to a reductionist paradigm that
conceives of complex processes in terms of simplified causal chains. Capitalist
production results in cascades of unforeseeable consequences, which must then be met
by magic-bullet solutions, setting the stage for further undesirable consequences. While
practical health measures arising from emerging knowledge of the microbiome are
important, they do not address the underlying cause of the disruptions that cause
dysbioses. We can expect to continue to see disruptions of the microbiome until we are
able to re-conceptualize and transform our engagement with ecosystems large and
small, and with the assistance they provide to humankind.
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“Metabolic rift” is the concept popularized by environmental sociologist John Bellamy
Foster, following Marx and others, to describe the disruption of ecological processes and
the tendency to sever the connection between ecological and social realms.  Foster
attributes the metabolic rift to the intrinsic dynamic of capitalist production, with its
private ownership of the means of production, drive for profits, ever-expanding markets,
and continuous growth. Marx employed this idea to describe the effects of capitalist
agriculture on the degradation of soil fertility. Foster and his co-thinkers have employed
the concept in analyses of climate change, biodiversity, agriculture, fisheries, and many
other aspects of human interaction with our biosphere.

There is perhaps no more appropriate use of this concept than in reference to the
microbial ecosystems of which we are a part, and which are part of us—the human
microbiota, organisms living on and inside of humans—and the disruptive impact the
prevailing mode of production and consumption has had on them, with serious
consequences for our health.

Our Own Ecosystem
Over the past decade and a half, advances in DNA sequencing technology and
bioinformatics, as well as theoretical advances in other areas of science, particularly
ecology, have favored paradigm-shifting research on what is popularly called the human
microbiome. In the literature, “microbiota” is generally used to denote the totality of
microbial communities inhabiting different body regions, and includes bacteria and
viruses, as well as eukaryotes (organisms with nuclei), such as fungi and amoebas. The
microbiome refers to the collective genomes of these organisms. Biologists are now able
to sample the genomes of entire microbial communities, particularly those living on and
in us, allowing us to identify many thousands of new microorganisms, which had
previously been unknown largely because they did not grow on culture dishes.

Based on this research, together with subsequent progress in identifying key genes and
their products, as well as metabolic pathways and metabolic byproducts, researchers
have identified a host of vital functions and networks involving these microbial
communities and their hosts. Informed by ecology, investigators of human microbiota
realized that they were looking at entire ecosystems, of which we are but one (albeit
crucial) species.

Our body ecosystems are integrated by a high degree of mutual dependency, the result
of millions of years of coevolution. For example, a primary function of maternal milk,
beyond infant nourishment, is the formation and development of the immune system of
infants. Breast milk contains a vast, species-specific array of relatively small bioactive
carbohydrates (human milk oligosaccharides), indigestible to human babies but
accessible to bacterial enzymes. A single variety of bacterium called Bifidobacterium
longum infantis has coevolved with Homo sapiens from related bacteria in our primate
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ancestors.  This bacterium contains all the enzymes necessary to process these
carbohydrates.  It is a critical early colonizer of the human gut, and is involved in various
aspects of infant nutrition and organ system development.

There are approximately as many microbial as human cells in our bodies.  Our gut
microbiomes alone consist of up to a hundred times more distinct genes than those
possessed by our own cells and perform a host of metabolic functions of which our cells
are incapable.  Several distinct microbial ecosystems cohabit our bodies. These are
characteristically found in our oral cavity, respiratory, gastrointestinal and vaginal tracts,
and our skin. The largest, most complex and best-studied microbial communities form
the gut microbiome. This comprises some 39 trillion bacterial cells (and large numbers of
other organisms).  Many of these microscopic symbionts, living in a mutually beneficial
relationship with humans, are integrated with our body systems through intricate food
webs. Some bacteria consume the metabolic products of other bacteria, and so on down
the chain, finally producing small molecules that have important effects on human
physiology.  Some bacteria and their cell components engage more directly with our
cells, while others engage in forms of competition, predation, and other interactions with
other microbes.  Some biologists conceive of our microbiota as a hitherto unrecognized
organ or organs fulfilling important physiological functions and networking with other
organ systems, while many microbial ecologists propose that we are not “individuals,”
but collective organisms comprised of the person (mammal) and its entire microbiome.
Many other species are also collective organisms, termed holobionts, tightly bound by
evolution ever since the earliest eukaryotic cells arose from fusions of independent
prokaryotes (non-nucleated cells, such as bacteria).

Accustomed to seeing microbes as deadly enemies subject to a “war on disease,”
scientists and health professionals have begun rethinking the microbiota as essential
components of our health, and indeed our development and evolution. Many disease
states are being reconceived as the result of disruptions of normal ecological states
caused by changes in microbiological diversity in the same way that alterations or loss of
biodiversity can give rise to susceptibility to invasion, decreased community productivity
and ability to adapt to change, and loss of other ecological functions and services.  Just
as monocrop farming systems favor proliferation of pests, facilitated by evolved
resistance to pesticides, changes in gut biodiversity as a result of antibiotic use seems to
favor invasion by pathogens, such as the often deadly gastrointestinal pathogen
Clostridium difficile.

Like other ecosystems, our microbial ecosystems develop from colonization through a
series of successions, with each stage contingent on previous ones. And like forest
ecosystems, for example, disruption of early stages can have far-reaching consequences
for the host and ecosystem.  If a cleared field is subject to ongoing disturbance, normal
stages of succession will not occur. Instead, the field will be colonized by an assortment
of opportunistic species. Something similar happens when the natural process of
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colonization and normal successional stages of microbiota are disrupted.  Studies have
confirmed that successional states of babies’ microbiota can be retarded and loss of
function can occur following disturbance at early stages.

Some evidence suggests that our bodies are initially colonized in utero via the placenta
and amniotic fluid.  Most studies confirm that the major surge of colonization occurs at
childbirth, as the baby passes through its mother’s birth canal. This initial microbiota
comes from the mother’s vagina.  Another major microbial succession develops
through breast-feeding, with colonizers like B. infantis possibly introduced through the
milk and/or proliferating from populations already present pre- or post-partum on the
basis of milk carbohydrates.  These initial successions are critical to our future health.
They are involved in the formation and development of a number of body systems.
Initial, healthy microbial communities are not established in cases of pre-term births,
caesarian sections, or formula feeding. Normally, our microbiota assume an adult
configuration by about five years of age, although they continue developing through
adolescence.

While there are certain taxonomic commonalities at given successional stages at given
body sites among different individuals, individual hosts vary greatly in terms of microbial
species. Yet core sets of major taxonomic groupings and metabolic functions seem to be
conserved across individuals at given body sites, absent disruption. As is the case with
macro-ecosystems, healthy microbial communities possess a high degree of functional
redundancy: various, even unrelated, bacteria fulfill the same functions, and fill the same
metabolic “niches” in different individuals.  This functional redundancy is facilitated by
horizontal gene transfer from one organism to another (unfortunately, including
pathogenic genes) as well as by convergent evolution.  And such redundancy enables
microbial communities to restore or retain metabolic functionality following
disturbances, ecological properties known as resilience and resistance. But it is not
infallible in the face of systematic ecological disturbance and biodiversity loss, which can
compound across generations, which is what we seem to be experiencing at both macro
and micro levels in our industrialized and industrializing societies.

Microbiota-Physiological Interactions
The human microbiota engages in interactions with all body systems in which both the
body and microbiota benefit (a “mutualistic” relationship), often as critical modulators of
developmental, metabolic, and physiological functions, including roles in the formation
of the vascular system, formation of bone tissue, and brain and neural development and
modulation.

The most important roles of microbial interaction involve development and modulation
of the immune system. Recent microbiome research has reframed our understanding of
the very role of the immune system from a defensive bastion to a gardener, cultivating a
healthy microbiota.  Symbiotic microbes, especially in the gut, are thought to play
crucial roles in mediating the body’s critical inflammatory response. Inflammation is vital
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for coping with pathogens and antigens; its dysfunction is implicated in a host of chronic
metabolic and autoimmune diseases epidemic in modern societies. One set of
mechanisms involves bacterial regulation of the balance between immune system cell
types.  This mediation may be carried out by way of various products of bacterial
metabolism, such as short-chained fatty acids. The equilibrium between pro- and anti-
inflammatory immune functions may be disrupted by various environmental inputs,
including diet and antibiotics, via alterations to the microbiota. In turn, changes and
breakdowns in microbial communities have been linked to several chronic and
pathogenic disease states, such as allergies, asthma, and inflammatory bowel disease.
Symbiotic microbes also play more direct roles in blocking pathogen colonization, by
outcompeting or destroying them.

Interactions between the microbiota and the digestive system are among the earliest
and best known. Beyond producing human nutrients through vitamin synthesis and
breakdown of complex carbohydrates, gut microbiota play a mediating role in
carbohydrate and lipid uptake, storage, and metabolism. They do this through metabolic
products and secretions that allow them to interact with the intestinal lining, adipose
cells in body fat deposits, and cells in the liver, including cells which produce the “hunger
hormones,” leptin and ghrelin.  They also play a critical role in the development of the
child’s intestinal lining and mucosa, including growth of the finger-like villi vital for
nutrient absorption, and the intestinal vascular tissue.

The gut microbiota is also believed to play a role in nervous system development and
function. According to Stephen M. Collins and others, various mouse studies indicate
that the microbiota affects “the development of neuronal circuitry that is relevant to a
broad spectrum of activities, including anxiety-like behavior, motor control, memory and
learning.”

Bacteria mediate a series of pathways known as the “gut-brain axis.” This axis involves
biochemical cross-talk between the dense complex of neurons associated with the
gastrointestinal tract, the vagus nerve, the neuro-endocrine and immune systems, and
the brain.  It is a two-way superhighway, which not only affects digestive and immune
functions, including secretion of pro-inflammatory substances, but also affects mood and
behavior. The Hypothalamus-Pituitary-Adrenal axis (HPA), which regulates the stress
response, is one component of this “gut-brain axis.” A number of gut microbes are
known to enhance or suppress the release of stress hormones by the HPA axis.

In addition, the microbiota can interact via other mechanisms with various regions of the
brain, including the emotion-regulating limbic system, possibly through products formed
by the workings of cells (metabolites), such as lactic acid, or through secretion of known
neurotransmitters, such as acetylcholine or GABA.  Microbial metabolites and cell
products also impinge on the vagus nerve and enteric nervous system.  Microbiota-
induced changes in immune system function can also affect neurological function
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through pro- or anti-inflammatory mechanisms.  Shifts in bacterial communities may
factor into a number of mental disorders, including depression, autism, and
schizophrenia.

Our bacterial communities are important modulators of our energy metabolism,
operating through various mechanisms, such as direct interactions with intestinal cells or
stimulation of neuroendocrine or inflammatory pathways. Distinct microbial
communities can either facilitate energy uptake and storage as fat, or efficient use of
energy sources by muscle and other cells. Thus, different microbial communities are
associated with types of obesity and overweight, as well as the suite of disorders related
to the metabolic syndrome. In particular, some microbial suites are thought to favor
insulin resistance, a pivotal condition of metabolic syndrome, associated with type 2
diabetes and cardiovascular disease, during which both serum insulin and glucose levels
increase, as muscle and other cells cease taking up glucose in response to the insulin.
Early studies showed that transfer of microbial communities from overweight humans to
germ-free mice fed lean diets can induce obesity and fat storage in the mice. In contrast,
germ-free mice fed high-sugar and high-fat diets showed resistance to obesity.
Moreover, in both humans and mice, gastric bypass surgery (RYGB) shifts microbiota
from obesity-associated states to lean-associated states. What is more, when these
gastric bypass microbiota are introduced into germ-free mice, they show reductions of
serum triglycerides and body weight. As Kristina B. Martinez and colleagues explained,
“taken together these data suggest that the microbiota following RYGB in humans and
mouse models elicits a direct functional impact on host energy balance, resulting in
restoration of metabolic homeostasis and resistance to diet-induced obesity.”

Microbiota Disruption and Disease
In macro-ecosystems, persistent disturbance can compound and lead to state changes in
the ecosystem, shifts in species and populations of organisms and ecosystem
functions.  Biodiversity decline can lead to the loss of ecosystem functions and services,
such as productivity, nutrient cycling, resilience, and resistance to invasion.  This is why
monocrop farming is particularly prone to pests, for example. Ecosystem functions
constitute the “metabolism” of a community. The loss of ecosystem functions and
services is due to the loss of both redundant and complementary functions of
organisms.  For example, pesticide use can result in loss of beneficial predatory insects
and pollinators or nitrogen-fixing symbiotic bacteria.

Just as is the case in macro-ecosystems, the microbiota shows a degree of resilience in
the face of stressors. However, dramatic or persistent stressors can induce changes from
healthy community composition and functionality to degraded communities (dysbiotic
states), or can even cause the collapse of the microbial communities.  Moreover,
previously adaptive states might be rendered maladaptive under altered environmental
conditions.  These appear to be occurring at present, particularly in industrialized
societies, but increasingly in developing nations. Residents of industrialized societies
show reduced microbial biodiversity compared to members of agrarian or hunter-
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gatherer societies, as well as a shift to bacterial communities with enhanced energy
storage functions—production of metabolites that favor inflammation and other
manifestations of a rift between symbiont-host relationships.  At the same time, global
societies are in the throes of an epidemic of non-communicable, chronic, and
autoimmune diseases that have been linked to the “western lifestyle.” Moreover, these
diseases show a socioeconomic gradient.  Industrializing societies increasingly present
these same dysbiotic states, while continuing to manifest other dysbioses associated
with malnutrition.

Two related theories, both supported by experimental and epidemiological data, may
help explain these observations. The better-known of the two, the “hygiene hypothesis,”
affirms that lack of childhood exposure to microbes limits normal development of the
immune system and leads to susceptibility to allergic and autoimmune conditions.  The
second, known as the “disappearing microbiome” (or more generally, biodiversity)
hypothesis, links social and environmental factors such as diet, rampant antibiotic use,
and current medical practice to the loss of microbial biodiversity and ecosystem
functionality.  One recent study demonstrated that a diet low in fiber and high in fat
and protein produced a decline in gut microbial diversity that compounded across
generations.  Nor could these losses be corrected simply by restoring high-fiber diets to
experimental subjects, indicating that some deficiencies were permanent, barring
benefits from transplants of microbiota.

Microbial community disruptions have been associated with a growing number of both
pathogenic and non-communicable illnesses. These include metabolic syndrome
(discussed above), as well as Irritable Bowel Syndrome, Inflammatory Bowel Disease,
necrotizing colitis, asthma, Kwashiorkor, Parkinson’s Disease, allergies, various types of
cancer, Autism Spectrum Disorder, multiple sclerosis, chronic depression, dermatitis,
periodontal disease, and candidiasis, among others.

Environmental Impacts on Microbiota
Many factors shape the development and functioning of the human microbiome.
However, two seem to play inordinately important roles in shaping community
composition and inducing dysbioses: host nutrition and exposure to antimicrobials and
other pharmaceutical compounds.

Diet

Diet and dietary change are thought to have the single greatest impact on our gut and
possibly all other microbiota, as a result of both nutrient availability and the effect of
what we consume on local environmental conditions, such as pH, secretion of bile, and
so on. Studies on the coevolution of mammals and intestinal microbial communities
have shown that characteristic microbiotas are associated with herbivorous, carnivorous,
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or omnivorous hosts, independent of host taxonomic group. And humans favoring
herbivorous or carnivorous diets possess microbiota similar to other mammals that rely
on these diets.

Gut communities differ strongly between individuals who consume diets high in simple
sugars, animal fats, and processed foods—i.e., the “Western diet” or “industrialized diet,”
and consumers of diets rich in vegetable fiber and other complex carbohydrates, sources
of vegetable protein and fish.  People consuming diets rich in fiber have greater
diversity of gut microorganisms, reflected in greater diversity of genes and functions of
microorganisms.  Such diets favor a preponderance of types of organisms (taxa) and
functions associated with production of a number of beneficial metabolites and
favorable interactions with our immune and other systems.  Diets rich in certain fats
and simple sugars, in contrast, are associated with diminished diversity at various levels,
seem to favor taxa that support greater energy extraction and storage functions, and
tend to produce a number of harmful metabolites that favor inflammation.

Short-term dietary variations can produce alterations to the microbiota. Generally, a
healthy, resilient microbial community can rebound from such disturbance. Consecutive
short-term changes and long-term dietary shifts can have profound, continuing, even
permanent impact on the microbiota.  Studies directly comparing diets provided over
different durations indicate that long-term consumption of the Western-type diet favors
distinct microbiota types with functions associated with detrimental health outcomes.

Marit Zinöcker and Inge Lindseth argue that “the Western diet promotes inflammation
that arises from both structural and behavioral changes in the resident microbiome. The
environment created in the gut by ultra-processed foods, a hallmark of the Western diet,
is an evolutionarily unique selection ground for microbes that can promote diverse
forms of inflammatory disease.”  They then point to a large number of studies linking
food additives—including emulsifiers and artificial sweeteners, low fiber content, high fat
and sugar content, and chemical byproducts of food processing—to both shifts in
bacterial communities and inflammation.

High-fat diets and specific fat types have been linked to alterations of the microbiota and
various metabolic markers. Research by Lawrence David and colleagues demonstrated
that shifting from a diet rich in vegetable fiber to one based on animal fats produced a
dramatic change in human gut community structure and functionality, with a decrease in
beneficial classes of bacteria and bacterial metabolites and concomitant increases in
detrimental bacteria and gene products.  A similar study on mice also pointed to the
overwhelming impact of high-sugar/high-fat (saturated animal fat) diet on microbiota.
Studies comparing omega-6 polyunsaturated (vegetable) fats with animal-based
saturated fats, and omega-3 rich polyunsaturated fish oils, showed different bacterial
groupings and functions in the experimental mice, which, in turn, correlated with
physiological changes in the animals. The first was associated with inflammation of fat
tissue, the second with factors leading to colitis, and the third with reduced adipose-
related inflammation.  Another study indicated that diets rich in omega-3
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polyunsaturated fatty acids favored enhanced neurobehavioral development in mice
“closely associated with comprehensive alterations in gut microbiota composition” and
other factors.  Recent research also demonstrated bacterially mediated reduction of
metabolic syndrome in mice given omega-3 fatty acids, and provided a possible
mechanism for this in microbially mediated anti-inflammatory signaling.

Simple sugar consumption is implicated in both microbial community alterations and
metabolic syndrome. Work in Yael Nobel’s laboratory showed that simulated soft drink
sugar combinations significantly altered the gut microbiome in infant and juvenile rats,
favoring some groups associated with type 2 diabetes and reducing groups associated
with beneficial bacterial metabolites.  Another study found that a diet enriched with
fructose induced symptoms of metabolic syndrome in rats, including insulin resistance,
elevated plasma lipid levels, glucose intolerance, and inflammation.  When the animals
given this high-fructose diet were treated with antibiotics, microbial community
composition shifted and metabolic syndrome markers disappeared. This suggests a
mediating role for these groups in fructose-induced metabolic syndrome. Research by
Fang Liu and her laboratory found that a seaweed-derived antioxidant reduced obesity,
metabolic syndrome, and inflammation in mice on high-fat and sucrose diets, and
tracked these ameliorative effects to alterations in the gut microbiota.

In a review of existing research, Benoit Chassaing and colleagues attributed a dominant
role in the proliferation of inflammatory metabolic syndrome disorders to the loss of
fiber from our diets, noting that it is “the macronutrient whose levels have changed
most” since the 1950s.  A recent investigation by a member of Chaissaing’s lab found
that the soluble fiber inulin suppressed metabolic syndrome in mice given high-fat diets,
and delineated the mechanism involved, which was disruption of the gut microbiota by
the high-fat diet, consequent loss of a protective layer in the small intestine, and
infiltration of the intestinal lining by bacteria, producing systemic inflammation.  The
inulin restored the microbes and protective layer.

The global population confronts a nutritional dichotomy. While industrialized nations
appear to suffer from epidemics of obesity and associated disorders, a large portion of
the world’s population faces malnutrition and hunger. Both manifestations are
associated with alterations to the microbiota.

While malnutrition is unequivocally due to insufficient uptake of nutrients, it can alter the
microbiota, which, in turn, may mediate a number of malnutrition-related conditions or
further hinder nutrient absorption. Several studies have shown that malnutrition reduces
and restructures microbial diversity, and has a particular impact on bacterial
communities during the postnatal period.  In turn, this altered microbiota has been
found to have a causal role in conditions like Kwashiorkor, a type of protein deficiency
associated with severe malnutrition.  A series of studies conducted in Bangladesh,
Malawi, and several other countries, based on clinical data as well as mouse and pig
models, found that both diet and microbiota influence growth in body mass and height,
affect the ability to metabolize various nutrients, and influence susceptibility to
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pathogens in infants.  One key element in this equation is the familiar presence in
maternal milk of human milk oligosaccharides. Researchers in Malawi and Bangladesh
found low levels of these human milk oligosaccharides in breast milk of mothers with
severely stunted six-month-old children as compared with healthy children.

Researchers transferred fecal microbiota from growth-stunted children and normal
children to germ-free mice and piglets. These studies showed that severe malnutrition
hinders normal microbial community successions, producing immature gut microbiota
with respect to the age of the child. This, in turn, was associated with reduced growth
rates in children.

In another set of studies, germ-free mice were given microbiota from either healthy or
stunted human infants and then mixed together. Mice are coprophagous, meaning that
gut bacteria are shared through ingestion of feces. The age-normal microbes spread to
the mice with immature microbiota, ameliorating the growth-stunting effect, as
compared with control mice that were just given the immature microbiota. Researchers
examined the mechanisms involved in these effects and found that the gut organisms
can modulate the response to growth hormone.

Finally, researchers used targeted antibodies to identify pathogenic strains of bacteria
from severely malnourished children that weakened the intestinal lining, permitting
infection and producing inflammation. These pathogens, normally inhibited by a healthy
microbiota, could be temporarily blocked by transplanted microbiota from healthy
hosts.

In summary, diet plays a profound role in shaping human microbial communities. At the
same time, our “industrial diet,” with its emphasis on cheap, processed foods consisting
of low fiber, high salt, fat, sugar, and chemical additive ingredients, has increasingly been
associated with a host of chronic and non-communicable conditions epidemic in
industrialized countries and increasingly sweeping developing countries. And of course
the apparent opposite of this surfeit of cheap, industrial food—the absolute lack of
nutrients endemic to many regions of the world—also produces pathological health
issues. Numerous studies indicate that these dual forms of malnutrition disrupt the gut
microbiota. And considerable evidence is accumulating, particular in the case of the
“Western diet,” that this disruption is playing a causal role in that epidemic.

Antibiotics

Antibiotics are not human inventions, but have instead always been part of the microbial
biochemical repertoire, produced by microorganisms not only to defeat competitors, but
as a means of intercellular communication. Antibiotics have also undoubtedly been of
enormous benefit to human health, principally for those who have had access to them.
However, their market-driven proliferation has led to persistent exposures far beyond
those normally experienced by microorganisms. Broad-spectrum antibiotics in particular
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have been favored, precisely due to their ability to control a broad range of pathogens,
but these have had especially pronounced effects as both disruptors of microbiota and
stimulators of antibiotic resistance.

Overuse of antibiotics on humans and farm animals has given rise, through natural
selection, to antibiotic resistant pathogens, and then “superbugs,” bacteria that are
resistant to several, or even all currently used antibiotics. And genes that confer
resistance—together with other factors that enhance pathogenicity—are transferred,
even between different bacterial species via horizontal gene transfer, converting
normally minor members of the microbiota into opportunistic killers.

Martin Blaser, a leading authority in microbiome research and originator of the
disappearing microbiome hypothesis, considers antibiotic use to be a “four-edged
blade.”  The first two blades are the benefits to individual and community health. The
third edge is the long-predicted problem of antibiotic resistance, and the fourth is the
damage antibiotics inflict on individual (and community) health through impact on the
microbiota. There are many important elements to this impact.

First, although there are differences in the specific effects of different antibiotic types, in
general, these drugs have been shown to alter microbial communities and their
functional capabilities. In a survey of antibiotic impacts on microbiota, sixty-eight
antibiotics affected abundance of forty-two major bacterial genera, some only impacting
one or a few taxa, while others affected up to thirty-two genera.  The main phyla
affected include the principal phyla in the human microbiome: the Bacteroidetes,
Firmicutes, Actinobacteria, and Proteobacteria. These include many important
symbionts. In fact, several of the genera associated with important positive health-
related functions are among the most antibiotic-sensitive types of microbes.  Change or
loss of community metabolic attributes due to antibiotic treatment can be drastic and
persistent, and may result from the loss of only a few keystone taxa. Treatment by
different antibiotics and combinations can result in changes in the relative abundance of
bacterial metabolites in fecal samples by up to 87 percent, producing imbalances in
many bioactive compounds.  A long-term study of Finnish school children showed that
administration of commonly prescribed antibiotics produced extensive losses and sharp
changes in microbial taxonomic and functional composition, and correlated increases in
some chronic health issues.  The authors concluded that a major class of commonly
prescribed antibiotics “may have undesired effects on the developing microbiota of
children, which may compromise the development of a healthy immune system and
metabolism.”

Second, many studies point to impacts of both short- and long-term administration, of
both sub-therapeutic and therapeutic exposures, on our microbial ecosystems. Clinical
and laboratory studies link persistent antibiotic use with enduring or permanent
diversity loss, including loss of keystone taxa critical for the microbial ecosystem and
human health. As a result, antibiotics may represent a major causal factor behind the
“disappearing microbiome” hypothesis.
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Third, antibiotic usage also correlates with human physiological changes and a growing
number of communicable and non-communicable pathologies. Studies on mice have
provided evidence of causal links between antibiotic usage, alterations to the microbiota
and pathologies.  Health practitioners and researchers have long known about the
phenomenon of anemia in patients given certain antibiotics. A recent mouse study
showed that red blood-cell formation in the bone marrow is mediated by gut microbes
via interactions with the intestinal immune system, which, in turn signals stem-cell
differentiation in the marrow. Antibiotics suppress this “cross-talk” by depleting the gut
microbiota.

Fourth, as with nutrition and other factors influencing the microbiome, antibiotics
appear to exercise their most profound impact during the critical developmental window
during early life stages. Asthma, types 1 and 2 diabetes, obesity, celiac disease, allergies,
and inflammatory bowel disease are all linked to antibiotic use via dysbioses in young
children. A large cohort study of more than 28,000 mother-child pairs in Denmark found
that antibiotic administration during the child’s first six months of life was associated
with heightened risk of overweight at seven years of age.

Fifth, not only does antibiotic treatment reduce biodiversity and alter community
composition, but it has been shown to enhance transfer of antibiotic resistance genes
between bacteria by several mechanisms. The human gut has been compared to a
bioreactor, with billions of bacteria in close proximity. This means that bacteria favored
with antibiotic resistance can readily transfer the respective genes to other bacteria.
Antibiotics have also been shown to increase expression of bacterial genes involved in
horizontal gene transfer and virus-mediated transfers of bacterial genes.

The impact of antibiotics commonly used in treatment of gastrointestinal infections is
illustrative. Antibiotic administration as prophylaxis following gastrointestinal tract
surgery reduces symbiotic microbes, particularly species that hold Clostridium difficile in
check, resulting in loss of colonization resistance and serious infections.  Treatment of
C. difficile infections with vancomycin, the drug of choice, also eliminates normal
microbiota and favors the spread of antibiotic-resistant pathogens.  In particular,
treatment with streptomycin or vancomycin leads to infection by Salmonella strains, due
to loss of immune system-modulating and/or colonization-blocking species, as well as by
stimulating intestinal cells to produce a food source that gives the Salmonella a
competitive advantage over other bacteria.

Social Determinants of Microbiota
Public health researchers have long known of the close relationship between social
conditions and inequities and health outcomes. A large body of public health literature
documents causal relationships between noncommunicable diseases—such as types 1
and 2 diabetes, cardiovascular disease, colon cancer, breast cancer, and asthma—and
socioeconomic status, race, and gender. Other studies have shown how social conditions
facilitate the spread and virulence of pathogens, often to the disadvantage of those who
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are most powerless. More recently, researchers have implicated the loss of microbial
diversity and dysbiotic states in many of these diseases. Keisha Findley and her
colleagues proposed a mechanistic model involving the immune system for the
interaction between social environment, microbiome, and many chronic conditions:

The host immune system is extremely sensitive to changes in the environment and the
microbiome. Consequently, perturbations of any kind may result in an aberrant immune
response and increased susceptibility to chronic disease. We speculate that a bidirectional
interaction exists between the microbiome and psychosocial indicators, and both change in
response to the health status of the individual. We recognize that the microbiome may
possibly change in response to the immune system, and conversely, the immune system
may respond to changes in the microbiome. Furthermore, the same bidirectional
relationship observed between the microbiome and psychosocial indicators exists between
overall health status and psycho-social indicators.

In the past few years, scientists have begun exploring the impact of social and economic
conditions and the consequences of inequity on the microbiome itself. The relationship
should not be surprising, given the impact of factors such as diet, medical practices, or
environmental exposures on the microbiota. Tao Ding and Patrick Schloss observed
distinct bacterial communities in vaginal and colonic sites in women depending on
educational level, a common surrogate for socioeconomic status.  Ricardo de Mello and
associates found greater proportions of Lactobacillus and Bifidobacterium—both
associated with beneficial health impacts—in fecal samples of Brazilian children from
wealthy backgrounds, compared to children from favelas.  And they noted the
association between these microbes and the Body Mass Index of the children. Another
study found a positive correlation between gut biodiversity and neighborhood
socioeconomic status.  A recent study established that the vaginal microbiota of white
women as compared with African American women is dominated by Lactobacillus
species, which establish a more acidic pH, favorable to vaginal health, a possible
consequence of dietary factors.  African Americans also have much higher rates of
colorectal cancer than whites. A study by Goyal and colleagues examined the
relationship between dysbiosis and colorectal cancers in African Americans.  They
observed that African Americans with colon cancer show lower levels of butyrate than
other racial groups. This compound is a beneficial metabolic product of bacteria
associated with high-fiber, low-fat diets. In addition, microbiota have been found to
diverge markedly between residents of industrialized and developing nations, urban and
rural populations, and between adult and elderly populations.  Among the latter, it has
been shown that gut microbiota is more diverse and healthier among elderly living in
communities than in residential facilities.  To what degree many of these microbial
differences respond to socioeconomic conditions or covariates or even genetics, or
whether they cause or reflect health conditions has not yet been established.

Capitalism and Micro-Ecological Disturbance
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Why would we consider this pattern of disruption of the microbiota and consequent
dysbioses to be a manifestation of dynamics intrinsic to the capitalist mode of
production and consumption, rather than excesses related to more general tendencies
of the “human condition” or more specific and unrelated tendencies of modernity (say,
urbanization)? It is worth noting that a burgeoning literature, borne of the looming
planetary ecological crises—including climate change, biodiversity loss, introduction of
toxic and carcinogenic materials into the biosphere, and disruption of biogeochemical
cycling—has increasingly drawn out the connection between these transgressions of
planetary ecological boundaries and capitalist production, particularly the inherent
tendencies to unending and ever-expanding capital accumulation and its corollary,
rampant consumerism. The major environmental influences on the human microbiome
all exemplify the tendency of capitalist production and consumption to disrupt
ecosystems and attenuate or destroy ecosystem functions and services.

The Food Industry
As mentioned previously, the so-called Western diet has been implicated in a growing
number of chronic, noncommunicable diseases (NCDs) associated with modern
industrialized societies. In fact, most public health experts express concern about the
soaring incidence rates of such conditions as obesity, coronary heart disease,
hypertension, stroke, diabetes, certain types of cancer, asthma, chronic hepatic diseases,
and chronic renal diseases in developed countries over the past decades. However,
these NCDs have now reached epidemic proportions in developing countries as well,
with 80 percent of NCD-related deaths now occurring in the lower and middle-income
countries, and with two-thirds of global deaths due to NCDs.

The Western diet is perhaps better characterized as the “industrial diet,” as Anthony
Winson calls it in his book of that title, which develops a detailed analysis of the role of
the food industry in our nutritional crisis and epidemic of NCDs.  Winson shows how
the proliferation of this unhealthy diet is largely the result of investment and marketing
decisions made over the past century by key players in the food industry in the global
North, particularly in the United States. These trends have extended to developing
countries over the past four decades of neoliberal economics and globalization. As we
have shown previously, the microbiome is a crucial mediator between diet and health,
with dysbioses implicated in a growing number of these diseases.

The industrial diet is dominated by highly processed, nutritionally stripped and degraded
foods, containing excessive amounts of unhealthy fats, refined sugars and simple starch,
salt, and various other additives. This diet represents a dramatic departure from the
nutritional components that humans consumed during the better part of our history as a
species, which shaped our biological evolution and that of our coevolved microbiota.
Various lines of research indicate that we are adapted to an omnivorous diet consisting
of significant portions of vegetable fiber derived from roots, leaves and shoots, various
types of animal protein obtained by foraging, hunting, fishing, or scavenging, and various
seeds, nuts, and fruits, as seasonally available. The modern Western diet upends these
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proportions, adding foodstuffs and nutrients that were scarce or unavailable to our
ancestors, while drastically reducing fiber and vitamin-rich fruits and vegetables.
Nutritionist Loren Cordain and her coauthors note that “although dairy products, cereals,
refined sugars, refined vegetable oils, and alcohol make up 72.1 percent of the total daily
energy consumed by all people in the United States, these types of foods would have
contributed little or none of the energy in the typical preagricultural hominin diet.”
Furthermore, combinations of those products make up the overwhelming majority of
confected, processed foods in the industrial diet.

According to Winson, this diet was largely birthed in the United States in the nineteenth
century, when specific conditions of territorial expansion, agriculture, economic
development, and processing technology favored the industrialization of food
production and processing.  Through the late nineteenth and twentieth centuries, it
expanded throughout the global North. Production of refined white flour, made possible
with the invention and proliferation of roller-milling, was an early example of this
tendency. Mass cultivation of hard spring wheat in the expanding U.S. agricultural
frontier was coupled with the new roller-milling and sifting technology to feed a growing
market for flour. Contrary to the older stone-milling methods, roller-milling strips the
wheat grain of the nutrient and fiber-containing germ and bran, and leaves only the
starchy endosperm, which may be further processed through various bleaching
methods. The white flour produced in this way can be stored and transported longer and
further, but is nutritionally worthless except as a source of calories.

The transition from free-range, grass-fed beef to feedlot production, another early
example, was the result of declining availability of open range lands, the development of
feed grain (corn, sorghum, and barley) production, as well as the integration of meat-
packing and grain trusts. Feedlot husbandry using increasingly cheap corn allowed the
rancher to produce the favored “marbled beef” and to speed up cattle growth from four
to five years with grass-feeding to some sixteen months under the feedlot system.
Turnover time was subsequently shortened further through the use of selective
breeding, hormones, and antibiotics. Today, livestock production, sometimes referred to
as an Industrial Livestock Operation, is carried out as an enormous factory process,
highly monopolized and integrated with other agricultural and processing industries.
Corn-fed beef, raised under conditions of inactivity and extreme overcrowding, has a
quantitatively and qualitatively different fat content from free-range beef, including far
greater overall proportions of fat and skewed proportions of saturated and unsaturated
fats, containing distorted proportions of omega-6 and omega-3 fatty acids.

During the same latter half of the nineteenth century, advances in industrial techniques
and transportation allowed producers of refined cane sugar to begin to mass market
that product, particularly in England, where consumption rose from some 18 pounds per
year per capita in 1840 to 90 pounds by the turn of the century, while the United States
followed a similar pattern.
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Further technological advances followed favoring processing, storage, and preservations
of produce and livestock products. Industrial food production soon expanded into
canned goods, soft-drinks, breakfast cereals, a proliferation of snacks, desserts, and
confections, and then the various categories of fabricated, processed, adulterated, and
simplified foods that dominate our diets today. Winson explained the profit-driven
dynamic of these processed foods:

Generally, more highly processed foodstuffs—goods with more “value added”—have
more attractive rates of return for retailers and processors. Foodstuffs that have undergone
little or no transformation—for example, table potatoes, fluid milk, eggs, flour, and tomato
paste, referred to in the food business as “commodity” products—typically have rather
thin profit margins, and indeed some, like fluid milk, are often sold below cost by
supermarkets as loss leaders primarily to attract customers to the store. On the other hand,
products that have been created out of inexpensive, and often subsidized, raw
commodities such as sugar, potatoes, wheat, and corn, with some processing and the
addition of inexpensive chemical additives to create “value added,” can be processed into
very profitable branded commodities. Their success in the market will depend heavily on
expensive advertising, however, and market control.

Winson characterized processed food commodities bereft of natural nutrients and fiber,
and loaded with fat, sweeteners, and salt, as “pseudo foods.”  He describes three
processes that underlie the nutritional degradation of the Western diet: simplification
and homogenization of whole food items, such as flour or fruits and vegetables; speedup
of turnover time of capital invested in food production, as occurs in livestock production;
and production of processed food commodities loaded with “macro-adulterants”—
sweeteners, salt, and fats—as well as other additives. Like the adulteration of old, macro-
adulteration aims to lower production costs of food commodities. However, these
macro-adulterants are also employed to increase consumption of products through
appealing appearance, taste, or smell, and by stimulating hard-wired behavioral
responses and creating cravings for the food items containing them. And food
manufacturers employ these products knowing their detrimental impact on human
health.

The massive expansion of the industrial diet was facilitated by the equally prodigious
expansion of mass marketing techniques and product placement by an oligopolistic food
industry.  Branding and name recognition played early and important roles in the
expansion of the “industrial diet,” and were key to the success of such well-known early
products as Kellogg’s corn flakes and Coca-Cola soft drink. In 2006, alone, the nine top
processed food vendors invested over $9 billion in advertising in the United States, the
vast majority of which promoted pseudo-foods.

In the latter part of the twentieth century, supermarkets and fast-food chains, together
with chain restaurant establishments and convenience stores, emerged and grew
explosively to become the primary purveyors of the industrial diet. The top ten U.S.
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supermarkets, controlling 80 percent of supermarket grocery sales, realized over $400
billion in sales in 2006. In a survey of shelf space in supermarkets, Winson found that

The average linear footage devoted to pseudo foods ranged from 26 to 37 percent of the
total of linear footage devoted to edible goods in the stores we surveyed. For the twelve
stores sampled in our study, the average proportion of pseudo foods of all foods measured
was 31 percent. Pseudo foods are more likely to be found on the shelves that constitute
the central area of each store, where they range from 35 to 44 percent of all edible
products. This, of course, is the part of most supermarket food environments where entire
aisles are devoted to bulk candies and chocolates, to cookie displays, and to soft drinks
and high-fat and high-sodium potato- and corn chip products.

In his analysis, Winson calculated that some 70 percent of shelf space in convenience
stores is dedicated to pseudo foods.

Turning to fast-food chains, the same author cited a study that noted that their menu
offerings “typically contain approximately 1,100 calories per 100 grams, whereas the
average British diet is estimated to contain 670 calories per 100 grams. The caloric load
of the fast-food meal, moreover, is noted to be twice the energy density of a healthy diet
(considered to be 525 calories per 100 grams).”  Another study cited assessed the
excessive amounts of salt, trans and total fats, and sugar in popular fast-food combo
meals.

During the last quarter of the twentieth century, prompted by tightening markets in the
developed countries and lured by cheap labor and land in developing markets in the
global South, the global food giants began outsourcing production, and marketing their
products on a massive scale to the developing world, facilitated by neoliberal financial
policies and trade agreements. Consequently, foreign direct investment (FDI) by major
food corporations in the global South has rapidly expanded. In particular,

Initial entry into markets focuses on packaged and highly processed foods that are
marketed as exotic, convenient, and modern. Such investment has become so successful
that food processing now has the highest amount of FDI compared to other parts of the
food system. Most astonishing is the fact that FDI in the global processed foods market is
more important than FDI in global trade. This fact is extremely important because it
reiterates just how much market power is involved within the global food industry—
particularly the sector that markets the most unhealthy, nutrient-poor food. Such extensive
investment by transnational Big Food companies has created food systems that are
increasingly influenced by external forces, rather than forces within the domestic
country.

FDI in food production and sales in developing countries has increased access to and
promotion of unhealthy processed foods, fostered the spread of global supermarket,
fast-food, and restaurant chains, facilitated penetration of the market and displacement
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of local food items by pseudo-foods, and increased control over local food systems by
transnational corporations.

Consequently, FDI has favored the substitution of nutrient-rich local produce and diets
with industrial diets poor in nutrients and rich in fat, sugar, and salt. In addition to
affecting consumers, FDI has led to severe impacts on local producers who cannot
compete with the technological advantages and economies of scale of large
corporations, and who are thus displaced from agricultural or food preparation activities,
and driven into rural or urban poverty. As Winson explained, “The long-standing unity of
production and consumption characterizing peasant production in most parts of the
world for millennia is being broken today on a phenomenal scale.”  The overall effect
has been to adversely impact nutritional status and give rise to the duality of rising
chronic metabolic disorders side-by-side with starvation, both symptoms of
malnutrition.

Various writers discuss the impact of urbanization on the adoption of the Western diet.
Urbanization is “not, of course, some natural process but is itself in large part the
product of the expropriation of masses of rural smallholders in country after country.”
More than 54 percent of the global population currently lives in cities, and this is
expected to grow to 66 percent by 2050, with the bulk of this growth occurring in Asia
and Africa.  Urban expansion paves the way for dietary change, in conjunction with
other aspects of the neoliberal program, in a number of ways. The rural-urban migration
deprives migrants of access to agricultural production, as does the increase in lands
occupied by big investors. It throws masses of people—and increasingly, women—into
the low-wage urban labor force (or unemployment), thus imposing both financial and
time constraints on household food preparation. It brings these masses into contact with
cheap processed foods, and particularly, fast- and street-foods, and immerses them in
an increasingly market-driven culture favoring these items.  For example, in Tanzania,
low-middle-income groups derive 70 percent of their caloric intake from street foods.

Winson elaborates on the ways these changes paved the way for supermarket and fast-
food chain expansion into developing country markets:

Recent research has documented the unprecedented pace by which the supermarket form
of retail food selling is transforming Latin America, Asia, and Africa. A series of changes
in the structures of economies in these regions have opened up new opportunities for the
supermarket retail form. Among the most important of these changes are rapid
urbanization; expansion of the middle class and with it a rise in disposable incomes for
this segment of the population and the ability to purchase refrigerators; significant
increases in female labor force participation; and the rapid growth of car culture and
access to public transport.

While such expansion is uneven in the global South, in Latin America both supermarkets
and convenience stores have expanded as much in ten years as they have in five decades
in the United States, to the point where supermarkets control up to 80 percent of retail
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food sales in Brazil and close to 60 percent in Argentina, Mexico, and Panama. While
local entrepreneurs may have launched the first supermarkets, this sector is increasingly
dominated by transnational chains, with some 70 to 80 percent of Latin American
supermarket chains in the hands of the top five global firms.

In the developed countries, supermarkets have responded, to some degree, to increasing
public nutritional awareness and healthy food movements, with a greater diversity of
healthier food items, at least for certain social classes. But in the developing world,
“supermarkets have another role here from a nutritional standpoint: introducing large
numbers of people among the newly emergent middle classes to ready-to-eat breakfast
cereals, processed cake mixes, reconstituted and artificially sweetened fruit juices,
industrial baked goods, processed meats, and other goods of the industrial food system
with which they may have only passing familiarity.”

Similarly, fast-food chains have rapidly spread into the expanding urban markets in the
global South. By 2008, McDonald’s, the largest global fast-food chain, “could boast that it
had a thousand restaurants in China alone, and over thirty thousand restaurants
worldwide.”  Of the Yum! Brands megafirm, which includes KFC, Pizza Hut, and Taco
Bell, Winson writes:

Worldwide sales for this transnational were in the $30 billion range in 2007. This rival
firm has itself a strong global presence, with restaurants in over a hundred countries by
2005. Indeed, it opened 780 restaurants in that year alone, boasting a total of an
astounding 34,000 restaurants around the globe by 2005, outnumbering McDonald’s in
number of restaurant units…. Yum! Brands is especially strong in rapidly colonizing the
world’s fastest growing markets in the global South, with China being its priority
target…. Yum! Brands reported 22 percent annual growth in its China business in 2005,
along with franchise business sales growing 10 percent in the Caribbean and Latin
America, 17 percent in the Middle East and North Africa, and 20 percent in South
Africa.

A massive public health, nutritionist, and food justice literature confirms that in both
developed and developing nations, class and other social relations between dominant
and subaltern groups determine diet and nutrition.  Numerous studies have also
documented the relationship between socioeconomic status, access to nutritional foods,
and chronic metabolic disease states, in addition to the classical diseases of malnutrition,
although some controversies rage over the modalities through which forms of
oppression play out in diet and NCDs.  And it is increasingly apparent that disruption
of our microbial ecosystems via the normal functioning of capitalist production and
marketing is a critical link in these relationships, just as it has shown itself to be in macro
realms. Moreover, the micro- and macro-ecological domains are inseparably
interconnected, as Rob Wallace shows in his book Big Farms Make Big Flu.

Big Pharma
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There are two major pathways through which antibiotics gain access to our microbiota.
First, there is the rampant use of antibiotics in health care. The second is the even more
profligate use of antibiotics as growth stimulants and prophylactics in the livestock
industry. While the latter use is of great importance for the proliferation of antibiotic
resistance in bacteria, the former has a greater known impact on the human microbiota,
and so I will focus on human antibiotic use. However, it is worth noting that, globally,
twice the amount of antibiotics are used for livestock as in human health applications.
Antibiotic residues have been found in animal products for human consumption,
including meat, milk, farmed and wild fish, and honey, in many cases above allowable
limits, and these have the potential to disrupt human microbiota, as has been shown in
studies of subtherapeutic doses.

The pharmaceutical sector is the world’s most profitable, alongside banking. The ten
largest pharmaceutical corporations made a combined profit of $90 billion in 2013, for a
net profit of 19 percent.  In 2009, global antibiotic sales were worth $42 billion,
equivalent to 5 percent of the pharmaceutical market.  This figure rose to $43.55
billion in 2012, and is expected to grow to $45.09 billion by 2019.  And, although
antibiotics are cheaper than other pharmaceuticals, a report by the Center for Disease
Dynamics, Economics and Policy observes that “antibiotics are still very profitable. In
2004, they were the third highest earning drug class behind central nervous system and
cardiovascular drugs, bringing in $26 billion to $45 billion per year…. Despite shorter
courses, many more people take antibiotics than they do other types of drug, and
antibiotics can even become ‘blockbusters.'”

However, while antibiotic sales have continued to increase, the major drug companies
have halted research and development on new classes of antibiotics needed to combat
emergent antibiotic resistant bacteria, citing low returns on investments and tight
regulatory requirements for bringing antibiotics to the market.

As old patents lapsed, the major drug firms outsourced or contracted much of antibiotic
production to generic manufacturers in countries with relatively low sale prices and low
costs of production for existing antibiotics, particularly China and India.  As one
indicator, by 2010, generic antibiotics represented over 80 percent of global
prescriptions.  India currently hosts a major part of the world’s production of bulk
drugs, while China produces the major share of active pharmaceutical ingredients used
in global antibiotic manufacture, supplying much of India’s bulk drug production.
Major health care and pharmaceutical corporations and pharmacy chains then work up
or simply market the final products.  Discussing the shift to generic antibiotic use in
both human and veterinary medicine, Pierre-Louis Toutain and Alain Bosquet-Melou
noted that, “competition between generics and also between generics and branded
antibiotics (usually forced to lower their prices in order to remain competitive against the
cheaper generic versions) leads to more aggressive promotion for the use of antibiotics
both in human and veterinary medicine.”  In turn, according to these authors, the
inundation of these markets with cheap generic antimicrobials has led to increased
consumption.

132

133

134

135

136

137

138

139

140

141

142

143

20/38

https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-132
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-133
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-134
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-135
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-136
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-137
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-138
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-139
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-140
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-141
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-142
https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-143


Today, antimicrobials are the most frequently prescribed drugs in the pharmaceutical
arsenal. Per capita human consumption of antibiotics remains highest in industrialized
countries. India, China, and the United States were the largest overall consumers in
2010, with total use at 12.9 x 109, 10 x 109, and 6.8 x 109 standard units, respectively.
Global antibiotic consumption increased by an estimated 36 percent between 2000 and
2010, to over 63,000 tons.  Approximately three-quarters of the increase in global
consumption was in the BRICS countries of Brazil, Russia, India, China, and South
Africa.  In the United States alone, antibiotics were prescribed at a rate of 842 courses
per 1,000 people in 2011, for a total of 262 million courses.  However, although global
antibiotic use is increasing, it should be noted that there is a global disparity in antibiotic
consumption, with much of the population of the global South denied access to
necessary antibiotics, where “no access and delays in access to antibiotics kill more
people than antibiotic resistance.”

According to the Center for Disease Dynamics, Economics and Policy report, “from 20 to
50 percent of total [human] antibiotic use is estimated to be inappropriate,” which is
defined as “the use of antibiotics when no health benefit is possible” and “the suboptimal
use of antibiotics for responsive conditions.”  The report noted that in U.S. hospitals
surveyed, “broad-spectrum antimicrobial therapy was commonly prescribed to
inpatients even when clinical signs of infection were not present, and this treatment was
not de-escalated or discontinued even when cultures did not show evidence of bacterial
infection.”

What has led to the massive overuse of antibiotics that is driving both the scourge of
antibiotic resistance and disruptions of the human microbiota? Over-prescription and
irrational consumption are aspects of the market-driven health care model that
dominates in almost all parts of the globe. Under the prevailing form of health care,
most countries have come to place a heavy focus on clinical medicine, and particularly
secondary and tertiary care, rather than upstream prevention, that is, by addressing
aspects such as the environmental and social determinants of health. “Taken together,
the evidence indicates that prescribing medicines has become a dominant, if not the
dominant, form of health care in western societies and its role in middle-income
countries is growing rapidly,” writes medical sociologist Joan Busfield.

Our market-based health care model has long been dominated by the pharmaceutical
industry. According to Busfield, direct marketing and promotion of their products
represent important mechanisms employed by the pharmaceutical industry to drive that
market.  In the major industrialized nations, marketing expenditures represent roughly
twice the amount as research and development expenditures.  Medical sociologist
John Abraham observed that, in the 10 years prior to 2005, British pharmaceutical
companies cut research personnel by 2 percent, while marketing staff grew by 59
percent.
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Through promotional activities directed at consumers and providers, the pharmaceutical
industry has encouraged consumers to expect pharmacological answers to health
problems and to demand medications from providers.  Further, according to Abraham,
pharmaceutical companies encourage “collaborative” or “active” consumerism, including
through funding for patient organizations.  In addition, he notes that “consumerism
has an ideological dimension, namely the discursive appropriation of the health needs of
patients as the demands of consumers in a market…such discourse is distinct from
patients’ actions and needs, and may not even be derived from them.”  He further
observed that “the ‘expert patient’ discourse needs to be put in the context of the
interests of those planning to provide the ‘information’ intended to construct ‘patient
expertise,’ namely a profit-seeking industry with a record of promoting its products with
misleading information to doctors.”

For their part, physicians are targeted by promotional literature through the mail, in
journals, and via other venues. They receive visits by business representatives and are
invited to industry-sponsored conferences. Various studies indicate that these
promotional efforts pay off in recommendations and prescriptions by physicians.
Physicians are funded to participate in product development or invited to promote
specific products at symposia.  Medical practice, together with patient demands,
facilitates excessive pharmaceutical dissemination, as physicians are prompted to
prescribe medications in order to show efficacy even in absence of need.  In addition,
in a number of countries, including China and India (where prescriptions are not
required), drug companies offer financial incentives to doctors to push their products,
particularly antibiotics.

The processes known as “medicalization” or “pharmaceuticalization” are deeply
imbricated in our medical model.  The terms signify slightly different aspects of the
social construction and delimitation of what constitute medical issues, which then
become amenable to the proper medication, or even the extension of drug therapy
outside of the domain of clinical medicine.  According to Busfield, the drug companies
are the “active drivers” in this process.  Contrary to the pharmaceutical industry’s
portrayal of its efforts “to support medicine’s therapeutic endeavors,” Busfield stated,
“the evidence indicates that the industry plays an active role in shaping those
endeavors.”

Medicalization received its initial impetus as a result of the postwar expansion of
consumerism. Elizabeth Siegel Watkins observes that “aspects of postwar culture
fostered an appetite for prescription drugs: specifically, a fascination with technological
solutions.”  As she explains, “consumers eagerly adopted new drugs in much the same
way that they adopted TV dinners and cake mixes.” In the postwar years, industry,
government, and the media pointed to Alexander Fleming’s discovery of penicillin and
Jonas Salk’s polio vaccine as heralding final victory in the war on infectious disease.
The pharmaceutical industry then proceeded to pump out antibiotics, proclaiming their
low cost and safety. All of this was in spite of the warning Fleming issued about the
danger of antibiotic resistance at his Nobel Prize award ceremony in 1945.
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The processes of pharmaceuticalization and medicalization gained further momentum
with the deregulation, commodification, and privatization of the neoliberal era.
According to Jill Fisher, “neoliberalism extends the commodification of health in new
ways; under its governing logic, consumption is not only a right but also an obligation if
one wants health care at all.”  She noted that

Patients as consumers have embraced the neoliberal logics of health care so that they too
see illness in reductionist terms and seek pharmaceuticals as targeted magic bullets. This
orientation toward health and medicine has been referred to as the pharmaceuticalization
of health care, in which the conditions of health and illness are ever more cast in terms of
products that can be purchased by health-engaged consumers. A medical system that
revolves around pharmaceuticals contributes to a culture of medical neoliberalism. It ties
together the commodification of health care with the fragmentation of the body where
illness is treated in terms of discrete systems for which there are tailored products.

In the United States, European Union, and United Kingdom, government regulatory
agencies have favored the interests of the pharmaceutical industry and facilitated
market development and pharmaceuticalization, despite their ostensible mandate to
regulate the industry on behalf of public health. Simon J. Williams and colleagues cited
various studies showing “corporate bias and privileged access” of the pharmaceutical
industry to the U.S. Food and Drug Administration and its British counterpart, the
Medicine and Health Care Products Regulatory Agency.  The results include
deregulation of pharmaceuticals, relaxation of safety standards and review
requirements, and reduction of review times on patentable drugs.  In addition,
Western regulatory agencies have undertaken joint initiatives, such as the International
Conference on Harmonisation, which seek to standardize regulatory frameworks to
accommodate development of markets and outsourcing of research and development
and production to developing countries.

Of particular relevance to the overuse of antibiotics, Abraham described the drivers and
significance of pharmaceuticalization:

increased pharmaceuticalization is not fuelled primarily by growth in pharmaceutical
provision to meet, and advance, health needs. Rather the sociological factors of
consumerism, deregulatory state policies, industry’s commercial priorities and product
promotion, and medicalization have been expanding pharmaceuticalization in ways that
are largely outside such provision. It may be that marketing does not necessarily create
false needs…but it may create false claims and expectations about the capacity of
pharmaceuticals to meet those needs. Moreover, the ideological appropriation of patients’
needs as consumer preferences in a market means that public health requirements, which
are poorly expressed in marketing processes such as antibiotic development and
protection from drug injury, are inappropriately neglected by an industry supposed to
advance health.
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Medicalization and pharmaceuticalization have directly and indirectly favored the
excessive and irrational use of antibiotics. The use of antibiotics as growth stimulants in
animal feed, or their prescription for viral diseases or even as placebos, represent clear
instances of pharmaceuticalization. Furthermore, these processes have forged a social-
psychological framework that encourages profligate consumption of antibiotics. Within
that framework, the industry’s expanded and outsourced production of cheap and easily
accessible generics, aggressive marketing to both consumers and providers, and control
over pharmaceutical research and its dissemination have driven antibiotic overuse and
wasteful consumption.

Our current medical model relies on the much-touted “miracles of modern medicine,” on
magic-bullet cures for diseases. In this sense, capitalist medicine follows the pattern
evident in capitalist agriculture, capitalist energy production, and indeed, the capitalist
mode of production in general, of disaggregating complex ecosystems to tease out
marketable, profitable commodities, and then offering magic-bullet solutions to the
environmental problems such production engenders. Infectious diseases are not merely
products of pathogens but of social and ecological disturbance, including those at the
level of microbial ecosystems. Our form of economic development has disrupted these
ecosystems at both macro and micro levels. Antibiotics are necessary, but cannot
substitute for a more ecologically integral approach to human health. In turn, such magic
bullets, themselves, are disconnected from ecological or biological contexts and offered
without integral consideration of consequences, producing further disruptions, for which
new magic bullets are devised.

The proliferation of antibiotic-resistant bacteria and the now desperate search for new
antibiotics, or the epidemic of potentially dysbiosis-induced noncommunicable diseases
and the booming literature on pre- and probiotics to address them, are both further
expressions of the failure of the current medical paradigm.

This reductionist model is expressed as “war on pathogens.” This war, with its exclusive
focus on “bad microbes” and therapeutic agents aimed narrowly at exterminating them,
was initiated by Louis Pasteur, Robert Koch, and others at the turn of the century. It
pushed aside the equally robust microbial ecosystem narratives traced out by biologists
such as Theodor Escherich, Arthur Isaac Kendall, and Elie Metchnikoff. Kendall offered
the view that the gut was the “perfect incubator” for innumerable mutualistic bacteria,
some of which might even defend their hosts against pathogens. Even Pasteur believed
that many gut bacteria were beneficial.

Conclusion
The antibiotic resistance crisis and the Western diet problem have been on the public
health radar for some time. But the potential pharmaceutical and industrial food effects
on the microbiome have received little attention. While a few authors have addressed

175

24/38

https://monthlyreview.org/2018/07/01/metabolic-rift-and-the-human-microbiome/#endnote-175


the public health implications of microbiome research and dysbiosis, they have not been
taken up in any systematic way.  Nevertheless, there are far-reaching conceptual and
practical implications of these phenomena for human health and ecology.

For the most part, the microbiome as a health-related phenomenon has been
approached within the framework of the prevailing pharmaceutical industry-driven
medical model, in yet another example of medicalization. Almost every journal article
dealing with microbiota and dysbiosis notes the potential for the pharmaceutical
industry to develop probiotics or prebiotics, or standardized microbial assemblages for
transplant, or genetically modified symbionts to enhance gut function or block
pathogens, or other marketable therapies derived from deeper knowledge of the
microbiome.

All of these therapies, in themselves, are of potential benefit to human health. However,
if history is any guide, in the hands of the for-profit pharmaceutical industry, the market
will guide their development and production and their full benefits will either be
economically inaccessible to the majority of our populations, or they will fail to garner
the investment interest of the major research firms. However, this approach fails to
address the underlying reasons for dysbiosis. To address those causes requires major
social and economic shifts, which, if climate change is any indication, are not achievable
within our current social order.

In the first place, dysbiosis must be dealt with ecologically, recognizing that our own
bodies are ecosystems, integrated at ever larger scales with our biosphere. Concretely,
this means that our “ecosystem functions and services”—principally our health—depend
on specific qualitative and quantitative states of biodiversity; that is types, functions and
numbers of, and interrelations between, microbiota. Altered environmental factors—
social and economic—can tip these states into dysfunctionality.

Our food is the major environmental influence on microbiota health. Under the impetus
of the market, diet has radically changed in industrialized nations and is rapidly changing
in industrializing nations. Instead of the ancestral diets that our species and our
microbial communities coevolved to assimilate, we now consume highly processed diets
bereft of sufficient fiber and complex plant carbohydrates, and overwhelmingly rich in
fats, salt, and simple sugars. These changes have favored alteration or disruption of the
microbiota that coevolved as mediators for a host of metabolic and physiological
functions. These alterations and disruptions do not represent “adaptations” to new
dietary regimes, but rather literal metabolic rifts with negative consequences for our
health. Thus, a radical reorganization of our food production, supply, and promotion, as
well as our nutritional education, is in order.

Neither our dominant agricultural system nor the food industry is geared toward
producing an appropriate balance of diverse and nutritional items that are affordable to
all. Agriculture focuses primarily on producing competitively marketable, profitable
commodities for the food processing industry and the consumer, with a concomitant
loss of diversity and nutritional value. Beyond producing commodities that fail to fulfill
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nutritional needs, our current large-scale capitalist agriculture is ecologically
unsustainable and relies on inputs that are also destructive of human and ecosystem
health. Therefore, production decisions should not be left in the hands of agribusinesses,
but should be socialized and placed in the hands of councils of associated farmers,
agricultural workers, and the general public. Production itself should be assumed by
small farmers, worker cooperatives, or publicly owned farms, according to crops,
geography, local tradition, and needed economies of scale. Production of agricultural
inputs, as well—such as fertilizers and pesticides—should be taken out of the hands of
the agrochemical conglomerates and placed under the control of accountable public
entities. Their use can be minimized and in many cases eliminated if farming is
approached ecologically, to improve field and soil habitat that promotes healthy soils,
the presence of beneficial organisms, leading to healthy plants and animals.

The food industry has geared its production to dysbiosis-inducing, food commodities,
larded with addictive salts, fats, and sugars. Class and race play a role in the investment
decisions of the food industry, whereby nutritionally poor foods, whose detrimental
impact is mediated by the microbiota, are disproportionately marketed to low-income
and marginalized populations. Meanwhile, better-off groups, while still subject to
unhealthy market items, have access to a greater variety of healthy dietary choices. A
healthy diet must be seen as a human right, and dietary recommendations must begin to
take into account impact on the microbiome. Food processing and distribution must be
under the control of the public (community) while food production decisions are made
by associated production workers using ecological principles, in accordance with
nutritional frameworks that provide for our integral needs.

As for the pharmaceutical industry, we have presently reached the absurd contradiction
in which mass production of antibiotics by the drug corporations, together with the
consumerism they engendered, has produced a crisis of antibiotic resistant bacteria and
disruption of human and other microbial ecosystems. Yet, citing low rates of profit, they
refuse to develop new antibiotics that can cope with the onslaught of multiple resistant
bacterial strains. Industry proposals to undertake research represent little more than
efforts to extort relaxation of safety and testing regulations and subsidies from
taxpayers.  In contrast, the pharmaceutical and health product giants continue to reap
profits through outsourced production of present generation antibiotics in generic or
branded form. As long as a profit is to be made, they will continue to expand production
and drive a market based largely on excessive and irrational antibiotic use. Together
with the obscene costs of many vital pharmaceuticals, this bespeaks the need to socialize
the pharmaceutical industry and subject it to a national plan to produce necessary
medications at prices accessible to all, by placing it under the democratic control of its
workforce, health professionals and consumers, and by subjecting its research and
ledgers to public scrutiny.

As amply shown in the foregoing discussion, the human microbiota is a critical mediator
between social determinants and physiological states and health outcomes. Access to
adequate nutrition, income, education, health services, and reliable sanitary
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infrastructure, as well as exposure to environmental hazards, reflecting existing social
power relations, all shape the microbiota. These power relations—social class, race, and
gender—loom in the background as upstream environmental modulators of dysbiotic
states. Insofar as the field of public health has long recognized that oppression and
exploitation are causal to health disparity and poor health outcomes, and strives for
their elimination, the human microbiome provides further compelling evidence of
negative health impacts and motivation to struggle to abolish racism and sexism, and the
exploitative relationship between capital and the majority of our populations.

Social, economic, and health inequity, like the ability of capital to profit at public expense,
rely on the power of the state, whether through tax policy, laws and regulatory regimes,
financial subsidies and incentives, or trade policy. Recent studies provide additional
evidence in support of an increasingly widespread public perception of corporate
domination of government, and the latter’s divorce from public needs. It is reasonable to
ask how economic and social policy might be structured by criteria of human health, life
quality, and ecological sustainability, instead of market share and profitability. How
might society as a whole democratically decide and plan how to invest its productive
resources to best serve those needs? What types of public control are needed to assure
that regulatory agencies are free of corporate interests, accountable and transparent?
And how might research and development of drugs, foods, and other necessary goods
and services also be removed from corporate control and rendered subject to public
scrutiny? How might our institutions be changed or what kinds of institutions must be
forged to pursue the elimination of power differentials in society, particularly those
inhering to oppressive relationships between groups, and exploitation of the majority by
a minority, all of which produce adverse health outcomes and ecological disruption?
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